If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2-16=0
a = 3; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·3·(-16)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*3}=\frac{0-8\sqrt{3}}{6} =-\frac{8\sqrt{3}}{6} =-\frac{4\sqrt{3}}{3} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*3}=\frac{0+8\sqrt{3}}{6} =\frac{8\sqrt{3}}{6} =\frac{4\sqrt{3}}{3} $
| x-x/40=10 | | 3b+4-b=4b-8 | | 15x-5=13+9 | | w-4+6=21 | | -3x-6(-2+31)=-249 | | -86=5p+2(7p-5) | | x+122=68 | | 57x=100000+5.82x | | 169-x^2=144 | | 7/4y=y | | 5c+1=5c+3 | | .n+140.5=225 | | -4+3(6x-31)=19 | | x3-2=9 | | 2.5=x^2/1.6-x | | 5(y-5)+2y=3 | | -5(7x-5)=235 | | n/2+3/2=3 | | -11+x=(-48)=25 | | 7x+5-4x=8 | | 4((m+1-2))=32 | | 0=-16t^2+455 | | 4w–5=14w-45 | | -8w+4(w+3)=-28 | | 9x+2=25x-34 | | 7(2+7x)=357 | | |r+5|=12 | | 4c+6=2(2c+3) | | 4(y+4)=38 | | x-x/4=10 | | 27-n=173 | | n+27-n=173 |